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THREE FAST ALGORITHMS FOR FOUR PROBLEMS
IN STABLE MARRIAGE*

DAN GUSFIELD-

Abstract. The stable marriage problem is a well-known problem of matching n men to n women to
achieve a certain type of "stability;" the O(n2) time Gale-Shapley [GS] algorithm for finding two particular,
but extreme, stable marriages (out of a possibly exponential number of stable marriages) is also well known.
In this paper we consider four problems concerned with finding information about the set of all stable
marriages, and with finding stable marriages other than those obtained by the Gale-Shapley algorithm. In
particular, we give an O(n2) time algorithm which, for any problem instance of n men and n women, finds
every man-woman pair that is contained in at least one stable marriage; we show that the same algorithm
finds all the "rotations" for the problem instance in O(n2) time; we give an O(n + nlSI) time and O(n2)
space bounded algorithm (which is time and space optimal) to enumerate all stable marriages, where S is
the set of them; and we give an O(n2) time algorithm to find the minimum regret stable marriage (the best
marriage, as measured by the person who is worst off in it). We believe the previous best time bounds for
these problems are respectively O(n4) (from a related problem in [K]), O(n3) [ILG], O(n31SI) [K] and
O(n4) [K]. The basic idea leading to the improved running times is to exploit theorems about the structure
of stable marriages in order to avoid back-up and duplicated work inherent in earlier algorithms.
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1. Introduction. The stable marriage problem is a well-known problem ofmatching
n men to n women to achieve a certain type of "stability"; the Gale-Shapley [GS]
algorithm for finding two particular, but extreme, stable marriages (out of a possibly
exponential number of stable marriages) is also well known, and is the basis of a
national system for matching hospitals to resident doctors [R]. In this paper we consider
four problems concerned with finding information about the set of all stable marriages,
and with finding stable marriages other than those obtained by the Gale-Shapley
algorithm. In particular, we give an O(n 2) time algorithm which, for any problem
instance of n men and n women, finds every man-women pair that is contained in at
least one stable marriage; we show that the same algorithm finds all the "rotations"
for the problem instance in O(n) time (rotations are central in efficiently finding the
optimal or most "egalitarian" stable marriage [ILG], and in the efficient enumeration
of all stable marriages); we give an O(n2+ nlSI) time and 0(/’/2) space bounded
algorithm (which is time and space optimal) to enumerate all stable marriages, where
S is the set of them; and we give an O(n2) time algorithm to find the minimum regret
stable marriage (the best marriage, as measured by the person who is worst off in it).
We believe the previous best time bounds for these problems are respectively O(/14
(from a related problem in [K]), O(n3) [ILG], O(r/3[S]) [K] and 0(//4) [K]. The basic
idea leading to the improved running times is to exploit theorems (from [K], [MW],
[IL] and this paper) about the structure of stable marriages in order to avoid back-up
and duplicated work inherent in earlier algorithms.
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112 DAN GUSFIELD

2. Definitions and background results. An instance of the stable marriage problem
consists of n men and n women, each of whom has a rank-ordered preference list of
the n people of the opposite sex. A marriage M is a one-to-one matching of the men
and the women. Marriage M is said to be unstable if there is a man m and a woman
w who are not matched to each other in M, but who both prefer each other to their
respective mates given in M. Such a pair is said to block M. A marriage that is not
unstable is called stable. The fundamental theorem [GS] is that there is a stable marriage
for any problem instance. It is known [K] that there can be an exponential number
of stable marriages, and the problem of counting then is #P-complete [IL].

The lattice of stable marriages. Let M and M’ be two stable marriages, and let
maxi (M, M’) be the woman man most prefers between his two assigned mates in
M and M’. Let mini (M, M’) denote the other woman. Then max (M, M’) is the
mapping of each man to max/(M, M’), and min (M, M’) is the opposite mapping.
We say that marriage M dominates marriage M’ (from the perspective of the men) if
and only if M max (M, M’), and a marriage X is between M and M’ if and only if
M dominates X and X dominates M’, and X differs from both M and M’. It is
surprising, but easy to show ([K], [GS84]) that max (M, M’) and min (M, M’) are
both stable marriages. Hence, under the relation of dominance, the set of all stable
marriages forms a lattice L where the join and union operations are the max and min
operations above. The unique maximum (most dominant) element of L is called the
man optimal marriage, and the unique (most dominated) element of L is called the
woman optimal marriage. The man optimal marriage has the very strong property that
for every man m, there is no stable marriage in which m is married to a woman he
prefers to his mate in the man optimal marriage.

If dominance is defined from the women’s point of view, and wmax and wmin
are the max and rain operations with respect to the women, then max (M, M’)=
wmin (M, M’)and min (M, M’)= wmax (M, M’), so the lattice obtained using wmax
is an inverted copy of the lattice obtained using max. Hence the man optimal marriage
is woman pessimal i.e. for every woman w, there is no stable marriage in which w is
married to a man she prefers less than her mate in the man optimal marriage. Similarly,
the woman-optimal marriage is man-pessimal. In this paper, dominance will always
be from the men’s point of view unless explicitly stated otherwise. The following is
an immediate consequence of the above facts.

LEMMA 0 [K], [GS84]. For any two stable marriages M and M’, M dominates M’
from the men’s point of view, if and only if M’ dominates Mfrom the women’s point of
view.

Gale-Shapley algorithm. The algorithm of [GS] finds the man optimal marriage,
although it can, by relabeling, also find the woman optimal marriage. This algorithm
will’ be the basis of two of the algorithms given in this paper, so we briefly review it here.

ALGORITHM GS

At the start of the algorithm, each person is free and becomes engaged during the execution of
the algorithm. Once a woman is engaged she never becomes free again (although to whom she is

engaged may change), but men can alternate between being free and being engaged. The following
step is iterated until all men are engaged:

Choose a free man m, and have m propose to the highest (most preferred) woman w on his list,
such that w has not already rejected m. If w is free, then w and m become engaged. If w is engaged
to man m’, then she rejects the man (m or m’) that she least prefers, and becomes, or remains, engaged
to the other man. The rejected man becomes, or remains, free.
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FAST ALGORITHMS FOR MARRIAGE 113

When all men are engaged, the engaged pairs are said to be mated or paired and form the man
optimal stable marriage.

Proof of the correctness of this method appears in many places [K], [GS], [L].
There are specializations of the above algorithm derived by imposing rules specifying
which free man makes the next proposal. In the remainder of the paper, we will use
the rule that if a man m has just been rejected, then man m makes the next proposal.
With this rule, it is clear that the Gale-Shapley algorithm can be implemented to run
in time O(n2).

Breakmarriage.
DEFINITION. Let M be a stable marriage. Let man m be married (paired) in M

to woman w. The operation breakmarriage (M, m), developed in [MW], is defined as
follows:

With the men and woman paired as in M, restart the Gale-Shapley algorithm by
"breaking" the marriage of m and w. Man m is now free, and woman w is "semi-free";
she will only accept a new proposal from a man she prefers to m. Operation breakmar-
riage (M, m) begins with m proposing to the woman following w in his list, and this
initiates a sequence of proposals, rejections and acceptances as given by the Gale-
Shapley algorithm. Operation brakmarriage (M, m) terminates either when some man
has been rejected by all women, or when w receives (and accepts) a proposal from a
man m’ she prefers to rn; at that point w is engaged to m’, and there are no free men.
Note that during the entire running of breakmarriage (M, m) there is exactly one free
man at any time, hence (unlike the Gale-Shapley algorithm above) the sequence of
proposals is completely determined: the next proposal is always made by the unique
free man.

The following is simple to prove:
LEMMA [MW]. If breakmarriage (M, m) terminates with all men engaged, then

the engaged pairs form a stable marriage.
We omit the proof, but the key observation is that no man gets a mate higher in

his list as a result of breakmarriage (M, m), and no woman gets a mate lower in her list.
The following is the central theorem in [MW].
THEOREM 1 [MW]. Every stable marriage M’ can be obtained by a series of

breakmarriage operations starting from the man optimal marriage Mo.
The proof is simple, and we will not repeat it. However, the key point in the proof

is that if M is any stable marriage which dominates M’, and man m’s mate in M’ is
different from his mate in M, then breakmarriage (M, m) either results in M’ or in a
stable marriage between M and M’ (i.e. breakmarriage (M, m) does not move any
man to a woman below his proper mate in M’). Hence M’ can be derived from Mo
by successively (and arbitrarily) choosing a man who is not yet married to his .mate
in M’, and executing a breakmarriage operation. Each such operation either results
in M’ or in a stable marriage that dominates M’, but which is closer to it.

In order to make the transformation from M0 to M’ completely deterministic, we
can impose an ordering on the men so that when a new breakmarriage operation must
be started, we select the first man (in the ordering) who is not yet married to his
intended mate in M’. Hence the set of proposals and their order is determined by M0,
M’ and the order of the men. This will be useful in Algorithm A below.

We note two useful corollaries to Theorem 1.
COROLLARY 1. Ifbreakmarriage M, m) results in marriage M’, then M’ dominates

all marriages which are dominated by M and in which m is not married to his mate in M.
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114 DAN GUSFIELD

COROLLARY 2. Ifm is married in M to a woman other than his mate in the woman
optimal marriage, then breakmarriage (M, m) terminates with a new stable marriage,
i.e. no man is rejected by the all the women.

Corollary is proven simply by letting M" be any stable marriage dominated by
M where m is not married to his mate in M. The first step in transforming M to M"
is to execute breakmarriage (M, m); hence breakmarriage (M, m) results in a marriage
which dominates M" and in which m has a different mate than in M. This corollary
reverses the orientation of Theorem 1: in the theorem, there is a known target marriage
which is obtained from Mo by successive breakmarriage operations, while with Corol-
lary we will do breakmarriage operations without having any target marriage in mind,
and we will extract information from the results. Corollary will be central in 5, and
Corollary 2 will permit a simpler exposition.

3. Finding all stable pairs in time O(n2).
DEFINITION. Given an instance of the stable marriage problem, a man-woman

pair (m, w) is said to be a stable pair if and only if m is married to w in some stable
marriage.

There is a fairly direct method [K] to test whether any given pair (m, w) is a stable
pair. The pair is stable if and only if there is a stable marriage omitting m and w,
where each man whom w prefers to m is mated to a woman he prefers to w, and where
each woman whom m prefers to w is mated to a man she prefers to m. This can be
tested by a direct modification ofthe preference lists and ofthe Gale-Shapley algorithm.
This approach would then need (R)(n 2) executions of the modified algorithm, so the
best resulting bound would be O(n4), although it would not only identify the stable
pairs, but marriages which contain them.

Knuth [K] mentions the usefulness of knowing the nonstable pairs, and shows
how the man optimal and woman optimal marriages can be used to identify some, but
not necessarily all, nonstable pairs. In this section we give a method to exactly identify
all stable pairs (hence all nonstable pairs) in O(n2) time (the same time needed to
find the man and woman optimal marriages); this is also the best time bound that we
know of to determine if even a single pair is stable.

THEOREM 2. Let Mo and Mt be the man optimal and woman optimal marriages
respectively. Let Mo, M1," ", M, be a sequence of stable marriages such that for each
iftom 0 to t-1, Mi dominates Mi+l and there is no stable marriage between Mi and
Mi+l. Then every stable pair appears in at least one of the marriages in the sequence.

Proof Let Mi and Mi+l be two consecutive stable marriages on the sequence, and
let m be a man who is married to wi in Mi and to wi+ wi in Mi+. Of course, man
prefers wi to Wi+l. Now let w be a woman who man m prefers to Wi+l but not to wi.

If there exists a stable marriage M in which m and w are married, then M’=
min [Mi, max (M, Mi+I)] is also a stable marriage in which m and w are married;
hence M’ is different from both Mi and Mi+. But then, since Mi dominates M’ and

M’ is between Mi and Mi+ a contradiction [3M’ dominates Mi+,
COROLLARY 3. Let H be the Hasse diagram (the graph representing the transitive

reduction) of the lattice of all stable marriages. Then the marriages along any path
(directed by the dominance relation in H between the man optimal and woman optimal
marriages contain all the stable pairs.

Figure l a shows the problem instance given in [MW] and Fig. lb displays the
Hasse diagram of the set of all stable marriages. Corollary 3 and the facts about
operations max, min, wmax, and wmin are easy to verify in this example.

We now show how to efficiently find all stable pairs by enumerating a short
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FAST ALGORITHMS FOR MARRIAGE 115

Men’s lists Women’s lists

1:57126843 1:53761284
2:23754186 2:86357214
3:85146237 3:15624873
4:32741685 4:87324156
5:72513684 5:64738125
6:16758423 6:28546371
7:25763481 7:75218643
8:38457261 8:74152368

FIG. a. Preference lists of eight men and women.

Mo 5 3 8 6 7 2 4 Man Optimal

M 83567124

M236587 24

M436187524

M636182574

8 3 67 5 24 M

[_______
83162574 M.s

83261574M

M 3 6 2 8 5 7 4 Woman Optimal

FIG. lb. The Hasse diagram of the set of all stable marriages. The number in position ofany list indicates
the woman married to man in that marriage.

sequence of stable marriages which satisfy the conditions of Theorem 2. The particular
marriages are obtained as a by-product of successive breakmarriage operations that
transform the man optimal marriage into the woman optimal marriage. This method
will later be used in the algorithm to find all stable marriages efficiently.

Algorithm A: Pausing breakmarriage. The following algorithm finds a sequence
of stable marriages that satisfy the conditions of Theorem 2. The key algorithmic idea
is to modify the breakmarriage operation so that it pauses at certain points where the
next marriage in the sequence is output. In particular, the algorithm will pause when
the proposal sequence generated by going from M0 to M, discovers a certain type of
cycle called a p-cycle (we will see later that these are the rotations in JILl). At each
pause, the p-cycle is output, and the next marriage in the sequence is generated from
the previous marriage by making changes dictated by the p-cycle. To more quickly
understand the algorithm and its running time, it is helpful to keep in mind that the
sequence of proposals, acceptances and rejections, is exactly the same sequence as
used in transforming Mo to M, by successive breakmarriage operations, as discussed
above, without pauses. The additional detail in the algorithm, which is interwoven
into the proposal sequence, is used to extract and output p-cycles and the sequence
of desired marriages.
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116 DAN GUSFIELD

ALGORITHM A

0. Set i-0; find and output the man optimal marriage Mo; find the woman optimal marriage
Mr. All women are unmarked at this point.

1. If Mi Mt then stop. Else unmark any marked women and let m be the first man (in the fixed
ordering of men) whose mate in Mi is different from his mate in Mr.

2. Set M to Mi. Let w be m’s mate in M. Mark w and initiate breakmarriage (M, m); carry out
(or continue, if returning from 3d) the sequence of proposals, acceptances and rejections as determined
by breakmarriage (M, m), with the following modifications:

(a) When any unmarked woman accepts a proposal, mark that woman.
(b) Whenever a marked woman, say w’ (which could be w), receives a proposal from a man, say

m’, whom she prefers to her mate in M, go to PAUSE breakmarriage (M, m).
Note that the comparison here is to the mate of w’ in M, not to whom she is presently engaged to.
Note also that the pause comes before w’ decides to accept or reject the proposal from m’.

3. PAUSE: When breakmarriage (M, m) pauses do:
3a. Let R(W) be the set containing w’ and all the women who were marked since tb,e most recent

time that w’ became marked; let R(M) be the mates of R(W) in Mi and let p-cycle R be the ordered
set of pairs consisting of R(W) and their respective mates in R(M), where the pairs are ordered in
the order that the women in R(W) were most recently marked.

3b. Let M+ be the marriage where w’ is paired with m’, where every other woman in R(W) is
paired to the man she is currently engaged to (as given in the current status of breakmarriage (M, m)),
and all other women are paired to their mates in Mi. Output the p-cycle R and marriage M+; set

/ and unmark all women in R(W).
3c. If w= w’, then let w’ accept the proposal from m’ (which completes breakmarriage (M, m)),

and go to step 1.
3d. If w # w’, then let w’ accept or reject the proposal from m’ (by comparing m’ to the man she

is currently engaged to in the current status of breakmarriage (M, m)).
If w’ rejects the proposal from m’, then mark w’; return to step 2 and continue witli breakmarriage

(M, m) (i.e. m’ next proposes to the woman on his list below w’).
If w’ accepts the proposal from m’, then leave w’ unmarked; go to step 2 and continue with

breakmarriage (M, m) (i.e. the man who was engaged to w’ when m’ made his proposal is now free
and makes the next proposal).

Note that by Corollary 2, each breakmarriage (M, m) operation, initiated in step
2, will ultimately finish with a new stable marriage (i.e. no man is rejected by all the
women). It should also be clear that each Mi in the sequence is a marriage, although
we must still demonstrate stability.

The five p-cycles output by Algorithm A on the problem instance given in
Fig. 1 are 1= {(1, 5), (3, 8)}, 7r2= {(1, 8), (2, 3), (4, 6)}, 7r3=({(3,5),(6,1)}, 7/’4--

{(5, 7), (7, 2)}, 7r5 {(3, 1), (5, 2)}, where the first number in each pair in a p-cycle is
a man and the second a woman. The p-cycles are listed in the order that the algorithm
finds them, where the algorithm has used the given numerical order of the men. Notice
that 37"4 and 7r5 were found in the running of a single breakmarriage operation, which
started with man 3. All the other breakmarriage operations discovered exactly one
p-cycle.

Before proving the correctness of Algorithm A, the following interpretation of the
algorithm may be helpful, especially in explaining step 3d. Suppose m is mated to w
in Mi and breakmarriage (M, m) pauses when a marked woman w’# w is proposed
to. Consider all of the proposals made from the start of breakmarriage (Mi, m) up to
and including the first proposal that w’ accepts; let the sequence of these proposals
be called P(w’). Now consider breakmarriage (Mi/1, m). The key point to note is that
breakmarriage (M/I, m) initially executes exactly the same sequence of proposals
P(w’) in exactly the same order. The proposal immediately following P(w’) in break-
marriage (M+, m) differs from the one in breakmarriage (M, rn), and is, in fact, the
next proposal made by Algorithm A in step 2, after returning from the pause in
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FAST ALGORITHMS FOR MARRIAGE 117

breakmarriage (Mi, m) caused by the proposal to w’. Algorithm A can be thought of
as an optimized algorithm that successively runs breakmarriages on Mo, M1, , Mr-l,
each until a p-cycle is encountered. The optimization makes sure that in each successive
pair ofbreakmarriage operations no proposal in P(w’) is repeated. Step 3d of Algorithm
A adjusts the mark of woman w’ appropriately so that the last proposal in P(w’) is
not repeated.

The following facts are easy to establish by examining the actions of Algorithm
A. They will be needed in the proof of correctness and time.

Fact 1. The men and women who have different mates in Mk than in Mk+ are
exactly the men and women in the pairs of Rk. The men in Rk (strictly) prefer their
mates in Mk to their mates in Mk+, and the women in Rk (strictly) prefer their mates
in Mk+ to their mates in Mk.

Fact 2. If m and m2 are the men in any two consecutive pairs (in the circular
order) of Rk, and they are married to w and WE respectively in Mk, then m is married
to w2 in Mk+

Fact 3. If ml and m are as above, then w is the first woman below wl on m’s
list such that w prefers m to m2, her mate in Mk.

Time analysis and correctness of Algorithm A. With the exception of the time
needed to output the marriages, Algorithm A runs in time O(n:), since step 1 is within
this time bound, and since no man proposes to the same woman twice, and all other
work is proportional to the number of proposals. In more detail" at any point in the
algorithm the unique free man makes the next proposal which is to the next woman
on his list; a linked list connecting the women in the order that they are marked allows
Ri to be found in constant time per pair; and the total number of pairs in all the
p-cycles is O(n2) since no pair is in more than one p-cycle (this follows from Fact 1).
For the purpose of efficiently outputting the pairs which appear in the sequence of
marriages, we can simply output the p-cycles and marriage Mt each pair that appears
in any of the marriages in the sequence is then output exactly once, and hence O(/12)
time suffices to output these pairs.

In order to show that the output pairs are in fact stable, we need the following
two lemmas:

LEMMA 2. Each M found by the algorithm is a stable marriage.
Proof. We prove this by induction. M0 is stable and we assume that all marriages

up though Mk are stable. Suppose Mk/I is not stable; then there is a man m and a
woman w who block Mk/. Since, by Fact 1, each woman either improves in Mk/I
(over Mk) or keeps her same mate, m must be in a pair in Rk, otherwise m and w
would block Mk. For the same reason, m cannot prefer w to his mate in Mk, so w
must be strictly between (in order of preference) m’s mate in Mk and his mate in
Mk/. Let B denote these women. But by Fact 3, none of the women in B prefer m
to their mates in Mk, and so by Fact 1, none of these women prefer rn to their mates
in Mk/. Hence Mk/ is stable.

LEMMA 3. There is no stable marriage between Mk and Mk+.
Proof. Suppose, to the contrary, that M is a stable marriage between Mk and

Mk/I. We claim first that no man m can be married in M to a woman between his
mate in Mk and his mate in Mk/. Let w be such a woman between m’s respective
mates, and let mw be the mate of w in Mk. By Fact 3, w prefers mw to m, and since
Mk dominates M and mw is not married to w in M, mw prefers w to his mate in M.
Hence mw and w block M. So if a stable M exists between Mk and Mk+, then every
man is either mated to his mate in Mk or to his mate in Mk/, and there must be at
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118 DAN GUSFIELD

least one man of each type (else M is either Mk or Mk/l). Now in the circular order
of pairs given in Rk, let m and m’ be any two consecutive men in Rk, and let w and
w’ be their respective mates in Mk. Recall that w’ becomes the mate of m in Mk/1.

Hence it is not possible that in M, m marries his mate in Mk/I and m’ marries his
mate in Mk, since they both would then marry w’. Similarly, it is not possible that in
M, m marries his mate in Mk and m’ marries his mate in Mk/I, for then w’ would be
unmarried in M. But then either M Mk or M Mk+I, and hence there is no marriage
M between Mk and Mk+l.

Hence by Lemmas 2 and 3, and Theorem 2:
THEOREM 3. The marriages found by Algorithm A contain all the stable pairs, and

all stable pairs can be found and output in time O( n2).

3.1. Rotations and Algorithm A. Theorems 2 and 3 along with Algorithm A above
showed that a small set of stable marriages contain all stable pairs. This fact, given
by direct proofs above, also follows from a much deeper analysis of the structure of
the set of all stable marriages, given in a powerful paper by Irving and Leather [IL].
Here we define rotations, the basic object in [IL], and show that Algorithm A finds
each of them exactly once. Finding all the rotations is the first step in the algorithm
of the next section which enumerates all stable marriages in time O(n2+/1[S[); the
O(/12) term contains the time used in Algorithm A to find the rotations. Finding all
the rotations is also the first step in the algorithm in [ILG] to find the optimal or most
egalitarian stable marriage.

Rotations.
DEFINITION. Let M be a stable marriage. For any man m let S(m) be the first

woman w’ on m’s list such that (i) m prefers his mate in M to w’, and (ii) w’ prefers
m to her mate in M. Let S’(m) be the man to whom S(m) is married to in M.

DEFINITION [I.L]. Let R ={(ml, 1421) (m2, w2),’’’, (mz, wz)} be an ordered list
of pairs from M such that for each from 1 to z, S’(mi) is mi+l(modz). Then R is called
a rotation (exposed in M).

Note that for a given marriage there may be many or there may be no exposed
rotations.

Given an instance of the stable marriage problem, consider the set of all stable
marriages for that instance, and consider the set of all rotations exposed by those
marriages (any given rotation may be exposed by many marriages).

It is shown in [IL] that
THEOREM 4 [IL]. Exceptfor the stable pairs that are in the woman optimal marriage

(which are in no rotations), each stable pair is in exactly one rotation, and, of course,
each pair in a.rotation is stable.

The proof of Theorem 4 is fairly involved, and we refer the reader to [IL] for its
motivation as well as its proof.

Finding all rotations in O(n2) time. Clearly, each p-cycle Rk is a rotation (exposed
in Mk) and hence Algorithm A finds a set of distinct rotations that contain all stable
pairs other than those in the woman optimal marriage. Therefore, by Theorem 4,
Algorithm A finds all rotations, and outputs each one exactly once, and so

THEOREM 5. Given an n by n instance ofthe stable marriageproblem, all the rotations
can be found and output in O( n 2) time.

We used the terminology "p-cycle" to avoid any confusion between what is derived directly from
Algorithm A, and what is known about rotations from [IL].
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FAST ALGORITHMS FOR MARRIAGE 119

Combined with Corollary 3, we have
THEOREM 6. Let P be any path in Hfrom the man optimal to the woman optimal

marriage. Then any two consecutive marriages on P differ by a single rotation, and the
set of the rotations between marriages along P contain all rotations exactly once.

It is also now easy to see that any sequence of stable marriages which satisfy the
conditions ofTheorem 2 must lie on such a path P in H, and so, Algorithm A enumerates
the marriages along some path in H from Mo to Mr.

4. Enumerating all stable marriages in optimal time and space. McVitie and Wilson
[MW] give an algorithm for enumerating all stable marriages in a problem instance
with n men and n women. Their algorithm can be shown to take at least
12( n3[Sl/ (log [SI2)) time, and no more than O(n3lSI) time, where S is the set of stable
marriages. Knuth [K] describes a similar algorithm which has the same complexity.2

Wirth [W] gives a different enumeration algorithm which is less efficient than these two.
In this section we give an algorithm for enumerating all stable marriages in

O(n/ nlSI) time and O(n2) space. Considering the time needed just to output the
marriages, and the space needed just to store the input preference lists, this time and
space use is necessary; it is surprising that it is also sufficient. The algorithm depends
critically on results in JILl, so we will first briefly review some of the results in JILl.
We, will next modify the central construction given in [IL], and then combine these
results with Algorithm A and the modified construction to obtain the enumeration
algorithm. We also note that in the same time bound, the Hasse diagram of the lattice
of all stable marriages can be explicitly constructed.

Partial orders and precedence graphs.
DEFINITION. For a given instance of the stable marriage problem, let 7r be a

rotation exposed in stable marriage M, and let M(Tr) be the marriage obtained by
mating each man m in r with S(m), and mating all men not in r with their mates in
M. We say that 7r moves each man and women in r from their mates in M to their
mates in M(rr). Note that a rotation always moves a man "down" his preference list,
and always moves a woman "up" her preference list, and that the moves made by a
rotation are independent of the marriage it is exposed in.

DEFINITION. A pair (m, w), not necessarily a stable pair, is said to be eliminated
by rotation 7r if 7r moves w from m or below in her preference list to strictly above m.

Note that if (m, w) is a pair in 7r then 7r eliminates (m, w), and that if (m, w’) is
any other pair eliminated by 7r, then m prefers w to w’, for otherwise no marriage in
which 7r is exposed could be stable. Note also that if w is the woman most preferred
by m such that (m, w) is eliminated by a rotation, then (m, w) is a stable pair, and is
in the eliminating rotation.

LEMMA 4 [IL]. No pair is eliminated by more than one rotation, and for any pair
(m, w), at most one rotation moves m to w.

This follows directly from the fact that Algorithm A finds all the rotations, as the
rotations it finds obey the above claim.

Now we define the following relation between rotations"
DEFINITION [IL]. Let 7r and p be two distinct rotations. Rotation 7r is said to

explicitly precede p if and only if 7r eliminates a pair (m, w), and /9 moves m to a
woman w’ such that m (strictly) prefers w to w’. The relation precedes is defined as
the transitive closure of the relation "explicitly precedes."

It is reported in [K] that the time is O(n2lSI), but this is incorrect. Constructions appear in [G]
showing that the algorithm can take l(n3lSI/[log Isi2]) time.
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120 DAN GUSFIELD

If r explicitly precedes p, then p cannot possibly become exposed until r is
eliminated. Hence it is easy to verify that the relation "precedes" defines a partial
order on the rotations. In order to get some intuition for the importance of this relation,
we claim (proofs follow from details in [IL]) that if r precedes p, then no matter how
the men are ordered, Algorithm A finds r before it finds p. Hence in any transformation
of M0 to a marriage M by breakmarriage operations, the moves specified by rotation
p will be made only if the moves specified by rotation r are made first. These claims
are strengthened in the following definitions and theorem.

DEFINITION. Given an instance of the stable marriage problem, let D be a directed
acyclic graph, where the nodes of D are in one-to-one correspondence with the set of
rotations (we give each node the name of its corresponding rotation) and for any two

nodes r and p, there is a directed edge from r to p if and only if rotation r precedes
rotation p. Note that D may have (rt2) nodes and (R)(n4) edges.

We will often refer informally to a rotation r in D, instead of the node in D
corresponding to rotation r; this should cause no confusion.

DEFNrrON. A subset of rotations SN of D is closed if and only if SN contains
all rotations which precede the rotations in SN.

The following is the central theorem of [IL]:
THEOREM 7 [IL]. Let S be the set ofall stable marriagesfor a given problem instance,

and let D be the corresponding directed graph formed from the set of all rotations. Then
there exists a one-to-one correspondence between S and the family of closed subsets in D,
i.e. each closed subset in D specifies a distinct stable marriage, and all stable marriages
are specified in this way.

For a closed set SN the corresponding stable marriage is obtained by starting
with Mo and making the moves specified by the rotations in SN, in any order consistent
with the precedence relations, i.e. the moves of notation r can be made only after the
moves of all rotations which precede r.

Refining D. The algorithm to enumerate all stable marriages will enumerate each
closed subset of D exactly once. The style of the enumeration (without concern for
time and space complexity) is not new, and a similar method is implicit in [IL],
although the question of generating all stable marriages is not explicitly discussed
there. Enumeration methods in the same style appear in [TIA], [LLR] and [KS]. The
new contributions here are several observations which allow the approach to run fast
and in small space. In particular, explicit use of D does not lead to the O(n2+ nlSI)
time bound, since construction of D would take more than O(n2) time (O(n 5) using
fast transitive closure is possible), and the enumeration itself would take more than
O(n) time per marriage (O(n2) is possible). Further, D needs )(n4) space just to store

it, hence the O(n2) space bound could not be achieved using D. The main idea in this
part of the paper is to use a sparse subgraph of D which preserves all the closed
subsets, and which can be built quickly. It is not difficult to see that any subgraph of
D whose transitive closure is D, preserves the closed subsets. We will construct such
a subgraph G, in O(n2) time, with the property that G has O(n2) edges, and that no

node in G has outdegree more than n. The bounded outdegree is the one of the keys
to the nlSI term in the time bound, and the sparsity is of course central to the space
bound.

DEFINITION. G is a directed acyclic subgraph of D containing all the nodes of
D but only edges defined by the following two rules, which are applied for each man
rn whose mate in Mo is different than his mate in Mr"

Rule 1. Let W(rn)= {Wo, Wl," ’, wr} be the set of women, in decreasing order
of preference by rn, such that for each from 0 to r, (rn, wi) is a stable pair. For from
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FAST ALGORITHMS FOR MARRIAGE 121

0 to r-1, let 7ri be the rotation containing pair (m, wi), and let II(m) be the set of
these rotations. Then for from 0 to r-2, G contains an edge from 7r to 7ri+l.

Rule 2. Suppose (m, w) is a nonstable pair eliminated by a rotation 7r, such that
.m prefers w to any other woman w’ in any other pair (m, w’) eliminated by 7r. If there
are women w and Wi+ in W(m) such that m prefers w to w and m prefers w to wi+l,

then G contains an edge from
Note that G is defined to contain only one copy of any edge, even though the

same edge may be specified more than once by the above rules.
Figure 2 shows graph G constructed from the problem instance and rotations of

Fig. 1; edge (’W3, ’T/’4 is defined by an application of Rule 2, while all the other edges
are defined by Rule 1. The graphs are not always so tree-like as in this example.

FIG. 2. Graph G.

LEMMA 5. G has only O(n2) edges; it can be constructed in time O(n2); and no
node in G has outdegree more than n.

Proof. Given the rotations, which can be found in O(n2) time, we label each pair
that is eliminated by some rotation with the name of the (unique) eliminating rotation.
To do this, we examine each rotation 7r, and for each woman w in a pair in 7r we note
the men that 7r moves w over; each of these pairs is labeled with 7r. Since 7r eliminates
a set of pairs corresponding to a contiguous sequence of men in w’s preference list,
finding these pairs takes constant time per pair. Then, since no pair is eliminated by
more than one rotation, these labelings can be done in O(n) total time.

Now G can be constructed by processing each man m’s list top down, starting
from his mate in Mo. We keep a mark on the most recently encountered stable pair
in m’s list. When a new stable pair is encountered, we create an edge in G from the
rotation labeling the marked pair to the rotation labeling the new pair, and we update
the mark. When a nonstable pair is encountered, we check (in unit time using a random
access list of the rotations) if its label has already been encountered in m’s list. If not,
then we create an edge in G from the rotation labeling the current nonstable pair, to
the rotation labeling the current marked pair (there will be one). Each scan down a
man’s list takes O(n) time, hence O(n) time in total.

Since the total time to build G is O(n), it can only have O(n2) edges. It is also
clear from the details above that for any rotation 7r, the scan down a given man m’s
list adds at most one edge out of 7r; hence the outdegree of any node in G is bounded
by n, the number of men. [3

To complete our claims about G, we need the following lemma.
LEMMA 6. For any two rotations 7r and p, 7r precedes p if and only if 7r reaches p

by a directed path in G, hence the transitive closure of G is D, and so the closed sets of
G and D are identical

Proof Clearly, G is a subgraph of D since each edge in G specifies a precedence
relation between the rotations at the endpoints ofthe edge. To prove the other direction,

D
ow

nl
oa

de
d 

12
/2

6/
21

 to
 1

03
.2

7.
8.

49
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



122 DAN GUSFIELD

it suffices to show that if 7r explicitly precedes p then 7r reaches p in G. By definition
of "explicitly precedes," there must be two women w and w* such that (m, w) is
eliminated by 7r, and p moves m to w*, and m prefers w to w*. Then w* is in W(m),
and p 1-I(m); say p 7ri., where, by definition, p moves m from wi. to w*. So in G
there is a directed path from 7ri to p for every 7ri 1-I(m) such that i< i*.

Now let w’ be the woman most preferred by m such that (m, w’) is eliminated by
7r. By construction of G, there is an edge (associated with the pair (m, w’)) from 7r to
7r, for some 7r, II(m); let w, be the woman that 7r, moves m from. So if i’-< i* (i.e.
wi, is equal to or is preferred to w.), then there is a directed path in G from 7r to p.
But m prefers w, to w, and w to w*, and since, by the actions of algorithm A, man m
is moved over any particular woman by at most one rotation, wi. cannot be preferred
to w’; hence wi, must either be wi. or be preferred to w., and the lemma follows.

Note that G is not necessarily the transitive reduction of D. As stated above, any
subgraph of D whose transitive closure is D, preserves the closed sets, and since we
want a sparse subgraph, the transitive reduction of D would be the best. However,
general algorithms to produce the transitive reduction of D (even assuming D is given)
would take much more than the O(n2) time to construct G. Perhaps the transitive
reduction of D can be computed from the rotations in O(n2) time for this special
problem, but G is sufficient for the needs of this paper.

4.1. The enumeration algorithm. We will first describe how to use G to build a
tree T with root r, where every edge in T is labeled with a rotation, such that the path
from the root to any node in T enumerates .a distinct closed set SN of rotations in G
(and D), and such that each closed set in G is enumerated in this way. Hence by
Theorem 7, there is a one-to-one correspondence between the nodes of T and the set
of all stable marriages. Further, the order of the rotations along any path will be such
that if 7r is a rotation on a given edge e (x, y), then all rotations that precede (in the
partial order of rotations) 7r will be on the path from the root to x. It follows inductively
that the stable marriage corresponding to any node x can be explicitly constructed by
starting at the root and successively executing the moves dictated by each rotation on
the path to x. Since each such change takes O(n) time, and each node in T corresponds
to a distinct stable marriage, it follows that all the stable marriages can be output in
O(n) time per marriage, once T has been constructed. In obtaining the output, if T
is traversed depth first, then only one complete marriage must be known at any time
(the previous, as well as the next, marriage can be obtained from the marriage and
the relevant rotation), hence only O(n) additional space is needed for the traversal
of T.

Building T. First, we label the rotations numerically according to a topological
ordering of G, i.e. every node has a larger label than any of its predecessors. It is well
known that these labels can be found in linear time in the number of edges of G,
hence in O(n2) time. There are ways to avoid topological labeling, but the exposition
becomes more complex.

To build T, we start at the root r and successively expand from any unexpanded
node y in T as follows: Let R(y) be the rotations along the path from r to y in T,
and let e=(x, y) be the last edge on this path. Let MR(y) be the set of maximal
rotations (nodes in G with indegree zero) when all the rotations in R(y) are removed
from G, and let LR(y) be those rotations in MR(y) whose label is larger than the
label on edge e. Then y is expanded by adding ILR(y)I edges out of node y, each
labeled with a distinct rotation in LR(y).

LEMMA 7. Given G, T can be constructed in O( n time per node.
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FAST ALGORITHMS FOR MARRIAGE 123

Proof We give here more implementation detail on expanding a node. Let e (x, y)
be the last edge on the path to y, and let the rotation on e be zr. We will assume, for
now, that at node x in T, there is a graph G(x), obtained from G by deleting all nodes
in R(x), and all incident edges. We also assume that the indegree of each node in
G(x) is known. Then LR(y) is the set of all neighbors of zr in G(x) which have
indegree 1 (note that these all have larger label than zr due to the topological labeling
of G), together with the set of rotations in LR(x) whose label is larger than or. The
first set can clearly be found in O(n) time since no node in G (hence in G(x)) has
outdegree more than n, i.e. there are at most n neighbors of zr in G(x). For the second
set, we claim that [LR(x)[ <= n, hence we can simply scan LR(x) to find those rotations
with label larger than r. To see that [LR(x)[ <= n, note first that for any fixed m, if
(m, w) and (m, w’) are two pairs in (necessarily) distinct rotations, then one of these
two rotations must precede (in the partial order) the other. But, by construction or
induction, each pair of rotations in LR(x) must be incomparable, and so for any man
m, m is in a pair in at most one rotation in LR(x).

So far, we have seen that if G(x) is given at node x, then the edges out of x can
be determined and labeled in time O(n). However, constructing the graphs at each of
the endpoints of these edges must be done with some care. For example, if T is built
in a breath first manner, then [LR(x)[ graphs have to be constructed and stored. In
addition to the enormous space this would require, it also would need more than O(n)
time per node, since the graphs can have O(rt 2) nodes and edges. The solution is to
expand T depth first: to expand a given node x in T, we find all the maximal elements
in G(x) and store them (essentially, constructing all the edges out of x), but we
construct a new graph G(y) for only one edge (x, y), labeled zr, out of x; node y is
the next node in T to be expanded. Graph G(x) can be transformed into G(y) in
O(n) time, by deleting node zr and all incident edges from G(x); the indegree in G(y)
of each neighbor of zr is one less than its indegree in G(x), and all other indegrees
remain as in G(x), so the indegrees are also maintained in O(n) time. Backing up
from y to x, we use G(y) and the rotation on edge (x, y) to reconstruct G(x) in time
O(n). Knowing G(x) and the untraversed edges out of node x, we choose an unexpan-
ded child y’ of x, transform G(x) into G(y’), and then expand y’. So T can be built
in O(n) time per node.

COROLLAR’ 4. Given G, the set of all stable marriage can be enumerated in O( n
time per marriage, and O( n 2) total space.

Proof The approach above was to first build T, and then to traverse it depth first
to explicitly construct the stable marriages. However, T was built depth first in order
to obtain the O(n) time bound, so we can construct the stable marriages as we build
T. But then, we never need to know the complete T at any given time. What is sufficient
at any one time, staying close to the above details, is the path from r to the current
node being expanded, and the edges (with their rotations) which directly hang off of
that path. The depth of T is at most O(rt2) since each edge on a path corresponds to
a distinct rotation, and the outdegree of each node in T is O(n), hence if we construct
and output the stable marriages as T is (implicitly) being built, depth first, then we
need only O(n3) space for T. However, all other space use is O(n2), and the total
space bound could be reduced to that if we did not store the maximal elements of G(x)
at each node x. These had been stored to faciliate the backup to x, and the next traversal
out of x, and to simplify the exposition. But, when backing up from node y to x, where
edge (x, y) is labeled with rotation zr, the maximal elements of G(x) can be found
from G(y) in O(n) time, since they are the maximal elements of G(y), plus zr, minus
the neighbors of r in G(x). So both G(x) and its maximal elements can be recomputed
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124 DAN GUSFIELD

in O(n) time on backup. However, we must be careful that no edge out of x is traversed
more than once. There are several ways to do this. One simple way is to traverse the
edges out of x in increasing order of their labels; each time we enter x we scan the
maximal elements of G(x) and choose the one with the smallest label larger than the
label on the edge just used to enter x either backup or first entry). In this way, only
a single path of T needs to be kept at any one time, hence the total space is O(n2),
and the time remains O(n) per node. [3

Figure 3 shows the tree T built from graph G of Fig. 2. Each node in T labeled
with the corresponding stable marriage from Fig. 1.

We still need to show that the nodes in T correspond one-to-one to the closed
sets of G, and that the order of the rotations along a path in G has the desired properties
claimed above. This is done in the following lemmas.

LEMMA 8. Let x be an arbitrary node in T. Then R(x) is a closed set of rotations
in D (hence G).

Proof By induction on the length of the path to x. The lemma is clearly true for
the root, whicl corresponds to the empty set, and for nodes at distance one from the
root, for each of these corresponds to a maximal rotation in D. Now let x be a node
at distance k from r, and let (x, y) be an edge out of x with label r. By inductive
hypothesis, R(x) is a closed set, and, by construction, r is maximal in G(x), so all
the predecessors of r are in R(x), and hence R(x)+{r} is a closed set in D, and this
set corresponds to node y. [3

COROLLARY 5. The stable marriage corresponding to node y can be constructed by
traversing the path from r to y, successively making the moves dictated by the rotations
on the path.

LEMMA 9. Every closed set in D is R(x) for some node x in T.
Proof By induction on the size of the set. The lemma is clearly true for size zero

and one, since these sets are the empty set and the maximal elements in D. Now
suppose the lemma holds for sets of size k, and let SN be a closed set of size k + 1.
SN must have a minimal element with respect to the partial order D; let r be the
minimal element of SN with the largest label. By the induction hypothesis, SN-{r}

FIG. 3. Tree T with rotations on edges, and stable marriages at nodes.
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FAST ALGORITHMS FOR MARRIAGE 125

is R(x) for some node x in T. But then, 7r is a maximal node in G(x), and since it
has the largest label of the rotations in SN, it will label an edge (x, y) out of x. Hence
SN is R(y). [3

LEMMA 10. Let x and x’ be two distinct nodes in T, then R(x) R(x’); hence no
closed set is enumerated twice in T.

Proof. Consider a node x and two edges (x, y) and (x, y’) out of x labeled rr and
/9, where 7r has a smaller label than p. Note that the labels along any path from r are
in increasing order, hence r cannot appear in the subtree of T rooted at y’. The lemma
follows by applying this observation inductively on the length of the paths. [3

Constructing the Hasse diagram. We will not give any details here, but we claim
that the Hasse diagram ofthe set of all stable marriages can also be explicitly constructed
in O(n2 d- nlSI) time, and (excluding the space for the lattice itself) with modest space.
To see that this is plausible, note that each node in the Hasse diagram can have
outdegree of at most n, since each node is associated with a stable marriage, and each
edge out of the node is associated with a rotation exposed in that marriage, and there
clearly can be no more than n/2 rotations exposed in any stable marriage. Hence the
size of the lattice itself is at most O(nlSI).

5. The minimum regret stable marriage problem.
DEFINITION. For stable marriage M containing the pair (m, w), the regret of m

is the position of woman w in m’s list, and the regret of w is the position of man m
in w’s list. The regret of a marriage M, denoted r(M), is defined to be the maximum
regret of any person, given the pairing in M, i.e. M is measured by the person who is
worst off in it.

Knuth [K] discusses the problem of finding a stable marriage which minimizes
r(M) over all stable marriages. The solution given in [K] is attributed to Alan Selkow
and naive analysis of it gives a running time of O(n4). Here we use the breakmarriage
operation and Corollary 1 to obtain a method that runs in time O(n2). It is Corollary
1 that allows this speed up by avoiding duplicated proposals and rejections.

For ease of exposition, we will break the problem into two problems: find, if one
exists, a marriage minimizing r(M) over all stable marriages in which at least one
woman is a person of maximum regret in the marriage, and find, if one exists, a
marriage minimizing r(M) over all stable marriages in which at least one man is a
person of maximum regret in the marriage. Let the first type of marriage be called
woman regret minimum, and the second type be called man regret minimum. Note
that for a given problem instance, it is possible that in every stable marriage, all people
with maximum regret are women (men) and hence there is no man (woman) regret
minimum. This happens if and only if all people of maximum regret in the woman
(man) optimal marriage are women (men). These cases are easy to check and adjust
for in the algorithm so, for ease of the exposition, we will assume that neither of these
two cases occur, and hence both a woman regret and a man regret minimum marriage
exist. The minimum regret stable marriage is obtained from these two marriages. The
following algorithm finds a woman regret minimum, assuming both a woman and a
man regret minimum exist.

ALGORITHM B

0. Find the man optimal stable marriage Mo, and find the woman optimal stable marriage. Set 0.
1. Let w be a woman with regret r(Mi) in Mi, and let rn be her mate in Mi. If rn and w are a

pair in the woman optimal marriage, then stop and output M M is a woman regret minimum. Else
perform operation breakmarriage (Mi, m) and let M+ be the resulting stable marriage.
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126 OAN GUSFIELO

2. If there are no women with regret r(Mi+l) in Mi+l, then stop and output Mi marriage Mg is
a woman regret minimum. Else set i+ 1, and go to step 1.

Correctness of Algorithm B. First, the algorithm must terminate since, after each
breakmarriage operation, any woman with a new mate prefers him to her previous
mate, and any man with a new mate prefers his previous mate. So unless the conditions
in step 1 apply, ultimately there will be no women with the maximum regret, and then
the conditions of step 2 will apply. Note that by Corollary 2, each breakmarriage
operation in the algorithm results in a stable marriage. Now if the algorithm terminates
in step 1, then Mi is woman regret minimum, for there is no stable marriage in which
w has a better mate than m. Hence we will assume that the algorithm terminates in
step 2.

Let Mo, M1,’’’, Mz be the sequence of marriages produced by the algorithm
(hence the algorithm outputs Mz-l). To prove that Mz-1 is woman regret minimum,
we need the following two lemmas.

LEMMA 11. For from 0 to z- 2, if Mi is woman regret minimum then so is

Proof Each woman either has the same mate in both marriages, or prefers her
mate in M+l, and, by the algorithm, for from 0 to z-2, there is a woman in M+l
with regret r(Mi+l).

LEMMA 12. For every from 0 to z- 1, either Mi is woman regret minimum or it
dominates all marriages which are.

Proof This is clearly true for Mo since it dominates all marriages. Suppose the
claim holds through Mk; let w be a woman with regret r(Mk) in Mk, and let m be
her mate in Mk. Now if Mk is not woman regret minimum, then w cannot be married
to m in any marriage which is. Hence we know that Mk dominates all woman regret
minimum marriages, and that m and w are not paired to each other in any of these
marriages. But by Corollary 1, breakmarriage (Mk, m) results in a marriage which
dominates all marriages which are dominated by Mk and in which m is not married
to his mate in Mk. Hence Mk+l dominates all woman regretminimum marriages. Hence
the lemma follows by inductively applying this argument until either z- 1, or until

Mi is woman regret minimum, where Lemma 11 applies.
Now we can prove correctness of the algorithm.
THEOREM 8. The marriage MZ-1 is voman regret minimum.

Proof Let MW be a woman regret minimum marriage. Suppose Mz-1 is not
woman regret minimum and let (m, w) be a pair in Mz_ where w is a woman with
regret r(Mz_l) in Mz-1. Then we know that Mz-1 dominates MW (from Lemma 12),
and that m is not married to w in MW (by the assumption that Mz_l is not woman
regret minimum), so, by Corollary 1, M dominates MW, and, by Lemma 0, MW
dominates M from the women’s point, of view. But, by the algorithm, there are no
women among the people of maximum regret in M, and so (again by Lemma 0)
there can be no women among the people ofmaximum regret in MW, since it dominates
(from the women’s view) M. But this is a contradiction, since at least one woman
in MW must have regret r(MW), or else MW is not even in the set of stable marriages
over which the woman regret minimum is defined. Hence either Mz_ is woman regret
minimum, or none exist, so, given our assumptions, the algorithm, is correct.

Implementation and time analysis of Algorithm B. The algorithm moves Mo towards
Mt using breakmarriage operations; hence the total number of proposals is O(n2).
Step 0 of the algorithm clearly requires only time O(n2), but steps 1 and 2 must be
implemented with some care in order to obtain an overall O(n) time bound. In each
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iteration of steps 1 and 2 the maximum regret of the men and of the women must be
determined and compared, and a woman with overall maximum regret, if one exists,
must be found. Simple scanning of the men and women at each iteration would lead
to a bound of O(n3)(O(n) time per iteration, and O(n2) iterations). Below we sketch
the details that give a time bound of O(n2) and a space bound of O(n) (not counting
the space for the preference lists).

At the start of each step 1, the status of the women in the current marriage will
be represented by n linked lists, one for each level of regret, where each list links
together (in no particular order) all of the women with regret in the current marriage.
For each i, we let c(i) be the number of women in list i; variable wr keeps the largest
such that c(i) 0. We also need two n length vectors of pointers, one to point to the

current location of each woman in the list that she is presently in, and one to point
to the head of each list. Clearly all the lists and pointers take O(n) space and can be
initiated in O(n) time. An identical data structure is kept for the men; K(i) is the
number of men in list i, and mr is the largest such that K(i) 0. Of course we also
need to record who the pairs are in the current marriage, and other information needed
to efficiently execute breakmarriage operations, but these details are assumed, since
they are trivial and were needed in Algorithm A.

Given the above data structures, a woman of regret r(M) in the current marriage
M is found at the head of the women’s list wr. After a breakmarriage operation, the
women with new mates are removed from their current lists (in constant time per
woman using the vector of pointers), and inserted at the heads of the appropriate new
lists, and the variables c(i) are adjusted. If c(wr) is now zero, then is decremented
from wr until c(i) 0 is found, and wr is updated. Since wr only decreases during
Algorithm B, the overall time for this search is O(n). The men’s lists are similarly
updated after the breakmarriage, but for any k(i) which changes from zero to a positive
count, mr is set to max (mr, i). Step 2 is implemented by comparing wr to mr. When
computing the man regret minimum, the roles of men and women and their respective
data structures are interchanged.

6. Open question. Consider the following problem: Find a fast algorithm to
determine if an input marriage is stable. One obvious way to test for stability is to
examine each man m to see if there is a woman w whom m prefers to his mate in M,
such that w also prefers m to her mate in M. With the obvious storage of the preference
lists, each check takes unit time. One can also check each woman’s preferences in the
above way, but note that we need only check from the perspective either of the men
or from the perspective of the women, but not both. If we define r(M, i) to be the
number of people whom person prefers to their mate in M, then stability can be
checked from the perspective of the men in time -’man r(M, m). Naively, this could
be as many as n(n-1)= O(n) checks (table look-ups). Is there a way to beat this
bound? Particularly, if preprocessing is allowed, say to build D, or some other
"reasonable" work, can the O(n2) bound per marriage be reduced?

The worst case bound of n(n 1) is, in fact, not optimal: no more than n(n- 1)/2
checks are needed, and these can be found and done in that time.

LEMMA 13. IfM is a stable marriage, then -’ r(M, m) + -’woman r(M, w) -<

n(n 1). Hence one of ,,, Jr(M, m)] orw [r(M, w)] is less than or equal to n(n 1)/2.
Proof If M is a stable marriage and man m prefers woman w to his current mate,

then woman w must not prefer man m to her current mate, and similarly, if woman
w prefers m to her mate, them m must not prefer w to his mate. Hence the pair (m, w)
can contribute at most one to r(M, m)/ r(M, w) and the lemma follows.
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128 DAN GUSFIELD

Hence we can test for stability by first computing Y. r(M, m) and w r(M, w)
(preprocessing permits us to construct the correct data structure so that this sum can
be done in O(n) time). If they sum to more than n(n-1), then M isn’t stable. If the
sum is less than or equal to n(n- 1), then we check for stability from the perspective
of the sex with smallest sum.
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